Курс по науке о данных

Студенты изучают сбор, хранение, визуализацию и проверку данных в увлекательной игровой форме!

Наука о данных для детей
изучайте науку о данных для детей

Учебные курсы, игры, обзоры и многое другое!

Добро пожаловать в удивительный мир науки о данных, созданный специально для детей! Приготовьтесь узнать, как собирать, хранить и показывать данные суперкрутыми способами! Этот потрясающий курс научит вас разным способам смотреть на данные и делать их простыми для понимания. На каждом уроке дети будут узнавать что-то новое с помощью нашего полезного курса с руководством, играть в веселые игры, которые используют то, что они узнали, и демонстрировать свои знания, отвечая на контрольные вопросы!

Навыки в области науки о данных пользуются большим спросом и открывают целый мир карьерных возможностей!

Курс включает в себя 16 уроков по науке о данных 2 урока творения

Рассматриваемые темы:

Наука о данных – это весело!

Учиться

Студенты изучают науку о данных на уроках под руководством инструктора.

Изучите науку о данных
Игры по науке о данных

Играть

Играйте в игры, используя только что полученные знания.

Обзор

Уверенно отвечайте на контрольные вопросы.

Что включено

✔️ Руководства для учителей
✔️ Объяснения курса
✔️ Интерактивные вопросы и ответы
✔️ Игры для проверки того, чему научились учащиеся
✔️ Вопросы для проверки знаний студентов
✔️ Уроки творения

Часто задаваемые вопросы

CodeMonkey’s Data Science course is an educational program designed to introduce students to the fundamentals of data science, data analysis, and data-driven thinking using Python. The course helps learners understand how data is collected, organized, analyzed, and used to make decisions in real-world scenarios.

Through hands-on coding challenges and guided projects, students work with datasets and learn how to extract insights from data. The course emphasizes practical application, helping students see how data science is used in fields such as technology, science, business, and artificial intelligence. It provides a strong foundation for students interested in STEM subjects and future technology careers.

The Data Science course is designed for middle school and early high school students, typically grades 7–10, who already have a basic understanding of programming. It is ideal for learners who are curious about how data works and want to explore how coding can be used to analyze information and solve real problems.

The course is suitable for both classroom and independent learning environments and works well for students who have completed introductory Python or coding courses and are ready to take the next step.

CodeMonkey’s Data Science course uses Python, one of the most popular and widely used programming languages in the world of data science, analytics, and machine learning. Python is known for its clear syntax and powerful capabilities, making it an excellent language for students learning how to work with data.

By using Python, students gain experience with a real-world programming language that is commonly used by professionals, helping bridge the gap between education and practical application.

Students learn a wide range of essential data science and programming concepts, including:

  • How to collect and organize data

  • How to work with datasets using Python

  • How to identify patterns, trends, and relationships in data

  • How to analyze and interpret results

  • How to make data-driven conclusions

In addition to technical skills, students develop analytical thinking and problem-solving abilities that are valuable across many subjects.

Yes, some prior experience with Python or basic programming concepts is recommended. The Data Science course is designed as a next step after introductory coding courses and builds on foundational skills such as variables, loops, and conditionals.

That said, the course includes structured lessons, guided practice, and built-in support to help students progress confidently as they learn new concepts.

Yes. The Data Science course is well suited for classroom instruction, STEM programs, coding clubs, and enrichment activities. Teachers can integrate it into computer science curricula or use it to introduce data literacy and analytical thinking.

The platform supports both guided instruction and independent student learning, making it flexible for different teaching styles and classroom setups.

CodeMonkey’s Data Science course uses interactive challenges, real-world examples, and hands-on data projects to keep students engaged. By working with meaningful datasets and practical scenarios, students see how data science applies to real life.

This project-based approach encourages curiosity, experimentation, and deeper understanding, helping students stay motivated throughout the course.

In addition to learning Python and data science concepts, students develop important transferable skills, including:

  • Critical and analytical thinking

  • Logical reasoning

  • Problem-solving strategies

  • Внимание к детали

  • Data literacy and interpretation

These skills are essential not only in STEM fields but also in everyday decision-making and academic success.

The Data Science course introduces students to skills that are increasingly important in today’s data-driven world. Data science plays a key role in fields such as technology, artificial intelligence, healthcare, business, and scientific research.

By learning how to analyze and work with data at an early age, students build a strong foundation for advanced computer science studies and future career opportunities in high-demand fields.

Data science is the field of collecting, analyzing, and interpreting data to make informed decisions. It combines programming, statistics, and problem-solving skills to identify patterns, trends, and insights from datasets.

Students who learn data science gain the ability to understand complex information and apply it to real-world problems in areas such as technology, business, healthcare, and scientific research.

Data science teaches students how to think critically and make decisions based on evidence. In today’s digital world, the ability to analyze data is valuable not only for STEM careers but also for understanding everyday information, spotting misinformation, and solving practical problems.

Developing data literacy skills prepares students for advanced study in computer science, mathematics, and technology-related fields, while also fostering analytical thinking and problem-solving abilities.

Students in data science courses develop a combination of technical and analytical skills, including:

  • Programming with languages like Python or R

  • Collecting and organizing datasets

  • Identifying patterns and trends

  • Data visualization and interpretation

  • Problem-solving and critical thinking

These skills help students understand data in a meaningful way and apply it to projects, research, and real-life scenarios.

Data science is one of the fastest-growing fields in technology and business. Learning data science prepares students for careers in areas such as software development, artificial intelligence, machine learning, business analytics, and scientific research.

Beyond technical skills, data science teaches students to think critically, interpret information, and solve complex problems, which are valuable in virtually any career path.

Data literacy is the ability to understand, interpret, and use data effectively, while data science is the practice of analyzing and applying data using programming, statistics, and algorithms.

Students who are data literate can evaluate information critically, and those who learn data science can actively create, manipulate, and analyze datasets to generate insights.

Чего же вы ждёте?

Наука о данных — важный курс для любого студента 21 века!

Наука о данных для детей

Начните обучать своих учеников основам и подготовьте их к использованию технологий в нашем цифровом мире!